
 ISBN 978-1-6654-9650-6 1

Mining Top-rank-k Erasable Patterns

Ye-In Chang1, Chen-Chang Wu2* and Kuan-Chieh Lin3
National Sun Yat-Sen University1,3 and Kaohsiung Medical University2

Kaohsiung, Taiwan

changyi@cse.nsysu.edu.tw1, wucc5501@kmu.edu.tw2, jackie10245@gmail.com3

Abstract

Erasable patterns extract items with low values conversely,

which can help users to find meaningless information in

databases, so as to reduce the cost in factories or stores. The

previous algorithms for mining erasable patterns make users

face the problem that the threshold is hard to decide. Le et al.

proposed the algorithm named TEPUS to mine top-rank-k

erasable patterns with the subsume concept and the dynamic

threshold. However, the TEPUS will generate too many

unnecessary number of candidates during the mining process.

In this paper, we propose an algorithm that applies the timely

updated dynamic threshold method for pruning unnecessary

candidates during the mining process. From our experimental

results, we show that our algorithm performs better than the

TEPUS algorithm.

Key words: dynamic threshold pruning, erasable patterns,

subsume concept, top-rank-k mining

Introduction

Data mining is to extract useful or interesting patterns from

the enormous database, and the research of data mining has

become more popular in recent years. There are many research

topics for mining patterns, like frequent patterns [1, 2, 3, 4, 5,

6, 7]. There are also other patterns such as frequent weighted

patterns [8, 9], maximal frequent patterns [10], high utility

patterns [11, 12, 13, 14], and erasable patterns [15, 16, 17, 18,

19, 20].

Most traditional methods of data mining are usually to

extract items with high frequency or values in databases.

However, erasable patterns extract items with low values

conversely, which can help users to find meaningless

information in databases, so as to reduce the cost of the

required components in factories or stores. There are many

algorithms to deal with erasable patterns, such as the MEI

algorithm [15], the pMEIC algorithm [19], etc.

However, it is hard for users to decide the threshold.

Therefore, top-k and top-rank-k mining patterns [1, 4, 13, 16]

are purposed to solve this problem. The top-rank-k concept

which orders patterns by the related counts in the ascending

order is applied to mine erasable patterns. Note that the result

of top-rank-k may exist several patterns with the same rank.

Le et at. proposed the TEPUS algorithm [16] for mining top-

rank-k erasable patterns with the subsume concept. During the

mining process, erasable patterns are classified according to

the dynamic threshold, which is a feature of top-rank-k mining.

Nevertheless, the TEPUS algorithm requires additional sorting

for finding subsume relations for size 1 patterns. In addition,

the TEPUS algorithm always update the dynamic threshold at

the end of the current size of patterns mining. Therefore, the

frequency of updating the dynamic threshold is too slow in the

TEPUS algorithm, which will lead to generate too many

unnecessary candidates in the mining process.
To get rid of these disadvantages, in this paper, we propose

an algorithm called Inverted Subsume Table (IST) algorithm

for mining top-rank-k erasable patterns. We construct Product-

Value list (PVlist) and Inverted-Subsume table (IsubT) to

record the information of produces and patterns, respectively.

We use the timely updated dynamic threshold MaxGain to

mine erasable patterns. Furthermore, during the mining process,

we update the dynamic threshold MaxGain, once the gain value

of the last entry of erasable patterns table (EpsT) has been

modified, instead of updating the dynamic threshold at the end

of current size of patterns mining in the TEPUS algorithm. It

means that we can prune more number of candidates than the

TEPUS algorithm, since the dynamic threshold could be

reduced while generating candidates. From our experiment

results, we show that the performance of our algorithm is better

than that of the TEPUS algorithm.

The rest of the paper is organized as follows. In Section 2,

we show a survey about the TEPUS algorithm. In Section 3,

we present our proposed IST algorithm. In Section 4, we

present the comparison of the performance between our IST

algorithm and the TEPUS algorithm. Finally, in Section 5, we

give the conclusion.

The TEPUS Algorithm

Le et al. proposed the TEPUS algorithms for mining top-

rank-k erasable patterns [16]. Let I = {i1, i2, ..., im} be a set of

all items, and DB = {P1, P2, ..., Pn}, where Pi (1 ≤ i ≤ n) is a

product, which is presented in the form of (Items, Val), where

Items are the components of Pi and Val is the profit of selling

the product Pi. Figure 1 is an example of dataset used

throughout this section [16].

Let top-rank-k table be denoted by TR, which is applied to
maintain the current top rank-k erasable itemsets, and itemsets
in the TR are sorted by the ascending order of the gain value.
When the TR has k entries, the dynamic threshold is defined as

Fig. 1 An example product dataset[16].

 ISBN 978-1-6654-9650-6 2

the gain value of the last entry in TR.

First of all, let k = 6. The TEPUS algorithm constructs

dPidset and subsume index of each item from the product

dataset Figure 2 is the resulting table after finding dPidset and

subsume index.

Second, the TEPUS algorithm extracts erasable 1-patterns

with these items’ dPidset and then sorts them in the ascending

order of gain values. Figure 3 shows the current step.

Next, the TEPUS algorithm generates size (l+1) candidates

using size l itemsets. Note that the dynamic threshold is set to

1200 so far, if the gain value of any two erasable itemsets is

greater than the dynamic threshold and the TR has k entries, the

algorithm will not create the next candidate. Finally, the

algorithm repeats these steps until no candidates can be

inserted into TR. Then, the mining process is finished here.

Figure 4 shows the final result of TR [16].

Proposed Method

In this section, we will use an example database to illustrate

our algorithm. During the mining process of erasable patterns,

we use the gain value of an itemset, which means the total

profits of products that the itemset exists, as a main factor to

decide whether the itemset is the erasable pattern or not. Thus,

we use the Product-Value list and the Inverted-Subsume table

to record the information. Note that we only have to scan the

database one time to record the information of the database.

During the mining process, we always use these data structures

to extract erasable patterns. Figure 5 shows an example

database (DBe) as the input.

A. The Product-Value List and Inverted-Subsume Table
The Product-value list, called PVlist, is composed of the

identifications (Pi) and values (Pval) of products. For example,

in Figure 5, there are eight products in DBe, we will record each

product and its value into the PVlist. The main feature of PV

list is to improve the algorithm when computing the gain values

of candidates. That is, we can compute gain values without

scanning the database again. Figure 6 shows the result of this

example.

The Inverted-Subsume table, which is called IsubT, is the

item-based table, which means that it records the information

of databases with each item in the set of items. The structure of

IsubT is composed of four fields, which are ItemName denoted

by Ix, gain(Ix), dPid(Ix) and subsumeList(Ix), containing the

items, the gain values of items, the dPidset of items and the

subsume lists of items, respectively. Figure 7 shows the size 1

items in IsubT after scanning DBe. Then, we use IsubT as the

main data structure during the remaining mining process.

B. The Mining Process for the Original Data
According to the given example database DBe above, we let

rank = 6 to illustrate our method. Considering the original data,

first of all, we scan database one time, so as to construct PVlist

shown in Figure 6. After that, we store the dPidset of each size

1 item in DBe, and calculate the gain values of them. Then, we

sort these items in the ascending order of gain values. Since the

Fig. 2 The gains, dPidsets and subsume for the example dataset [16].

Fig. 6 The PVlist of the original data in the DBe.

Fig. 5 An example of product database DBe.

Fig. 3 Top six ranked erasable itemsets in TR [16].

Fig. 4 Top six ranked erasable itemsets for the example datatset [16].

Fig. 7 Size 1 items in IsubT.

 ISBN 978-1-6654-9650-6 3

rank is six, we set the rank size of EpsT to six, where EpsT is

the table to store top-rank-k erasable itemsets. Figure 8 shows

the size 1 items in EpsT .

After setting size 1 erasable patterns, we have a sorted size 1

item list [d, b, c, f, a, e, g], which is sorted in the ascending

order of gain values. The items in the list are those patterns

which are in EpsT, and they will be used to create size 2

candidates. We check subsume relations of each item in this

item list. The checking process of subsume relation is shown

in Figure 9.

For the following mining process, we use PVlist, IsubT for

mining without scanning the database again. For size 2

candidates, we combine each item in size 1 item list, which

means that if size 1 item list has n number of items, we have at

most (n*(n-1)/2) number of candidates. In the above case, we

have 7 items in the size 1 item list, so we will have at most 21

(= 7*6/2) number of candidates. For size l (l ≥ 3) candidates,

we check whether items have the same prefix to generate

candidates. For example, given two items XY and XZ, they have

the same prefix X. If two items have the same prefix, we will

generate the candidate of these two items, i.e., the itemset XYZ

(or XZY).

Moreover, we use the dynamic threshold method to prune

unnecessary candidates and improve the performance of

generating next candidates. The dynamic threshold is denoted

by MaxGain, which is defined as follows, where EpsTlast means

the patterns in the rank k in EpsT :

MaxGain = gain(EpsTlast).

While generating next candidates, we will check whether the

gain value of the candidate is lower than or equal to MaxGain.

There are three possible cases while we updating EpsT with the

candidate.

For Case I, if the gain value of the candidate is greater than

MaxGain, we can assure that the candidate is not the erasable

pattern, it can be pruned. The reason is that the rank of the

candidate will be greater than k due to the feature of gain values.

For Case II, the gain value of the candidate is lower than or

equal to MaxGain, and EpsT also has patterns with this gain

value. Therefore, we insert the candidate into EpsT with the

same rank of these patterns. For Case III, the gain value of the

candidate is lower than MaxGain, and EpsT has no patterns

with this gain value. It means that we have to add the candidate

into EpsT with a new rank, and let the rank of patterns whose

gain values are greater than the gain value of the candidate be

added 1. Moreover, we will update MaxGain according to the

definition above. Figure 10 shows erasable patterns with their

ranks and gain values.

Performance

In this section, we show the performance of mining top-rank-

k erasable patterns with our IST algorithm and the TEPUS

algorithm. We use the Chess dataset from the dataset repository

(http://fimi.uantwerpen.be/data/) [16]. Both of these two

algorithms are implemented in Java on the personal computer

with the Intel Core i7-8700 3.2 GHz CPU and 16 GB of RAM.

We consider not only the processing time of mining erasable

patterns, but also the number of candidates generated in the

mining process. The profits of products of the Chess dataset

are generated between 1 to 5000. The value of rank k which we

considered are range of 40 to 200.

From Figure 14 and Figure 15 for the Chess dataset, we have

set the value of k to 40, 80, 120, 160, 200, respectively. These

figures below show the processing time of our IST algorithm is
faster than the processing time of the TEPUS algorithm.
Besides, our algorithm also generated less number of

candidates than the TEPUS algorithm. It is because the TEPUS

does not update the MaxGain timely. Thus, the TEPUS

algorithm generates too many unnecessary candidates during

the mining process. Therefore, the performance of our IST

algorithm is much better than that of TEPUS algorithm.

Fig. 8 The size 1 items in EpsT with rank = 6.

Fig. 9 The processing table of finding subsume relation of size 1

items.

Fig. 10 The EpsT after mining erasable patterns of the original

data in DBe.

 ISBN 978-1-6654-9650-6 4

Conclusion

In this paper, we have proposed the IST algorithm for

incremental mining top-rank-k erasable patterns efficiently.

We have used data structures, the PVlist and the IsubT to store

the information of items for the mining process. Furthermore,

we have proposed MaxGain to prune more candidates than the

TEPUS does. The experiment results have shown that the

performance of our IST algorithm is better than that of the

TEPUS algorithm.

Acknowledgment

This research was supported in part by the Ministry of

Science and Technology of Republic of China under Grant No.

MOST-108-2221-E-110-060.

References

[1] Z.-H. Deng, “Fast Mining Top-rank-k Frequent Patterns by

Using Node-lists,” Expert Systems with Applications, Vol. 41,

pp. 1763-1768, March 2014.

[2] Z.-H. Deng, “Diffnodesets: an efficient structure for fast mining

frequent itemsets,” Applied Soft Computing, Vol. 41, pp. 214-

223, April 2016.

[3] Z.-H. Deng, W. ZhongHui, and J. JiaJian, “A new algorithm for

fast mining frequent itemsets using N-lists,” Information

Sciences, Vol. 55, pp. 2008-2030, Sept. 2012.

[4] Q. Huynh-Thi-Le, T. Le, B. Vo, and B. Le, “An efficient and

effective algorithm for mining top-rank-k frequent patterns,”

Expert Systems with Applications, Vol. 42, pp. 156-164, Jan.

2015.

[5] A. Rakesh and S. Ramakrishnan, “Fast algorithms for mining

association rules in large databases,” Proc. of the 20th Int. Conf.

on Very Large Data Bases, pp. 487-499, 1994.

[6] B. Vo, T. Le, F. Coenen, and T.-P. Hong, “Mining frequent

itemsets using the N-list and subsume concepts,” International

Journal of Machine Learning and Cybernetics, Vol. 7, pp. 253-

265, April 2016.

[7] W. Song, B. Yang, and Z. Xu, “Index-BitTableFI: an improved

algorithm for mining frequent itemsets,” Knowledge-Based

Systems, Vol. 21, pp. 507-513, Aug. 2008.

[8] H. Bui, et al., “A weighted N-list-based method for mining

frequent weighted itemsets,” Expert Systems with Applications,

Vol. 96, pp. 388-405, April 2018.

[9] B. Vo, F. Coenen, and B. Le, “A new method for mining

frequent weighted itemsets based on WIT-trees,” Expert

Systems with Applications, Vol. 40, pp. 1256-1264, March 2013.

[10] B. Vo, S. Pham, T. Le, and Z.-H. Deng, “A novel approach for

mining maximal frequent patterns,” Expert Systems with

Applications, Vol. 73, pp. 178–186, May 2017.

[11] S. Krishnamoorthy, “Hminer: efficiently mining high utility

itemsets,” Expert Systems with Applications, Vol. 90, pp. 168-

183, Dec. 2017.

[12] S. Krishnamoorthy, “Efficient mining of high utility itemsets

with multiple minimum utility thresholds,” Engineering

Applications of Artificial Intelligence, Vol. 69, pp. 112-126,

March 2018.

[13] S. Lee and J. S. Park, “Top-k high utility itemset mining based

on utility-list structures,” Proc. of the Int. Conf. on Big Data and

Smart Computing (Big-Comp), pp. 101-108, 2016.

[14] U. Yun, H. Ryang, G. Lee, and H. Fujita, “An efficient

algorithm for mining high utility patterns from incremental

databases with one database scan,” Knowledge-Based Systems,

Vol. 124, pp. 188-206, May 2017.

[15] T. Le and B. Vo, “MEI: an efficient algorithm for mining

erasable itemsets,” Engineering Applications of Artificial

Intelligence, Vol. 27, pp. 155-166, Jan. 2014.

[16] T. Le, B. Vo, and S. W. Baik, “Efficient algorithms for mining

top-rank-k erasable patterns using pruning strategies and the

subsume concept,” Engineering Applications of Artificial

Intelligence, Vol. 68, pp. 1-9, Feb. 2018.

[17] G. Lee, U. Yun, H. Ryang, and D. Kim, “Erasable itemset

mining over incremental databases with weight conditions,”

Engineering Applications of Artificial Intelligence, Vol. 52, pp.

213–234, June 2016.

[18] G. Nguyen, T. Le, B. Vo, and B. Le, “A new approach for

mining top-rank-k erasable itemsets,” Asian Conf. on Intelligent

Information and Database Systems, pp. 73-82, 2014.

[19] B. Vo, T. Le, W. Pedrycz, G. Nguyen, and S. W. Baik, “Mining

erasable itemsets with subset and superset itemset constraints,”

Expert Systems with Applications, Vol. 69, pp. 50-61, March

2017.

[20] U. Yun and G. Lee, “Sliding window based weighted erasable

stream pattern mining for stream data applications,” Future

Generation Computer Systems, Vol. 59, pp. 1-20, Jan. 2016.

Fig. 15 A comparison of the number of candidates generated

between our IST algorithm and the TEPUS algorithm for mining

the Chess dataset under the change of k.

Fig. 14 A comparison of the processing time between our IST

algorithm and the TEPUS algorithm for mining the Chess dataset

under the change of k.

