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Abstract 
 

Erasable patterns extract items with low values conversely, 

which can help users to find meaningless information in 

databases, so as to reduce the cost in factories or stores. The 

previous algorithms for mining erasable patterns make users 

face the problem that the threshold is hard to decide. Le et al. 

proposed the algorithm named TEPUS to mine top-rank-k 

erasable patterns with the subsume concept and the dynamic 

threshold. However, the TEPUS will generate too many 

unnecessary number of candidates during the mining process. 

In this paper, we propose an algorithm that applies the timely 

updated dynamic threshold method for pruning unnecessary 

candidates during the mining process. From our experimental 

results, we show that our algorithm performs better than the 

TEPUS algorithm. 
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Introduction 
     

Data mining is to extract useful or interesting patterns from 

the enormous database, and the research of data mining has 

become more popular in recent years. There are many research 

topics for mining patterns, like frequent patterns [1, 2, 3, 4, 5, 

6, 7]. There are also other patterns such as frequent weighted 

patterns [8, 9], maximal frequent patterns [10], high utility 

patterns [11, 12, 13, 14], and erasable patterns [15, 16, 17, 18, 

19, 20].  

Most traditional methods of data mining are usually to 

extract items with high frequency or values in databases. 

However, erasable patterns extract items with low values 

conversely, which can help users to find meaningless 

information in databases, so as to reduce the cost of the 

required components in factories or stores. There are many 

algorithms to deal with erasable patterns, such as the MEI 

algorithm [15], the pMEIC algorithm [19], etc. 

However, it is hard for users to decide the threshold. 

Therefore, top-k and top-rank-k mining patterns [1, 4, 13, 16] 

are purposed to solve this problem. The top-rank-k concept 

which orders patterns by the related counts in the ascending 

order is applied to mine erasable patterns. Note that the result 

of top-rank-k may exist several patterns with the same rank. 

Le et at. proposed the TEPUS algorithm [16] for mining top-

rank-k erasable patterns with the subsume concept. During the 

mining process, erasable patterns are classified according to 

the dynamic threshold, which is a feature of top-rank-k mining. 

Nevertheless, the TEPUS algorithm requires additional sorting 

for finding subsume relations for size 1 patterns. In addition, 

the TEPUS algorithm always update the dynamic threshold at 

the end of the current size of patterns mining. Therefore, the 

frequency of updating the dynamic threshold is too slow in the 

TEPUS algorithm, which will lead to generate too many 

unnecessary candidates in the mining process. 
To get rid of these disadvantages, in this paper, we propose 

an algorithm called Inverted Subsume Table (IST) algorithm 

for mining top-rank-k erasable patterns. We construct Product-

Value list (PVlist) and Inverted-Subsume table (IsubT) to 

record the information of produces and patterns, respectively. 

We use the timely updated dynamic threshold MaxGain to 

mine erasable patterns. Furthermore, during the mining process, 

we update the dynamic threshold MaxGain, once the gain value 

of the last entry of erasable patterns table (EpsT) has been 

modified, instead of updating the dynamic threshold at the end 

of current size of patterns mining in the TEPUS algorithm. It 

means that we can prune more number of candidates than the 

TEPUS algorithm, since the dynamic threshold could be 

reduced while generating candidates. From our experiment 

results, we show that the performance of our algorithm is better 

than that of the TEPUS algorithm. 

The rest of the paper is organized as follows. In Section 2, 

we show a survey about the TEPUS algorithm. In Section 3, 

we present our proposed IST algorithm. In Section 4, we 

present the comparison of the performance between our IST 

algorithm and the TEPUS algorithm. Finally, in Section 5, we 

give the conclusion. 

 

The TEPUS Algorithm 
 

Le et al. proposed the TEPUS algorithms for mining top-

rank-k erasable patterns [16]. Let I = {i1, i2, ..., im} be a set of 

all items, and DB = {P1, P2, ..., Pn}, where Pi (1 ≤ i ≤ n) is a 

product, which is presented in the form of (Items, Val), where 

Items are the components of Pi and Val is the profit of selling 

the product Pi. Figure 1 is an example of dataset used 

throughout this section [16]. 

 

Let top-rank-k table be denoted by TR, which is applied to 
maintain the current top rank-k erasable itemsets, and itemsets 
in the TR are sorted by the ascending order of the gain value. 
When the TR has k entries, the dynamic threshold is defined as 

 
 

Fig. 1 An example product dataset[16]. 
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the gain value of the last entry in TR. 

First of all, let k = 6. The TEPUS algorithm constructs 

dPidset and subsume index of each item from the product 

dataset Figure 2 is the resulting table after finding dPidset and 

subsume index.  

Second, the TEPUS algorithm extracts erasable 1-patterns 

with these items’ dPidset and then sorts them in the ascending 

order of gain values. Figure 3 shows the current step. 

 

Next, the TEPUS algorithm generates size (l+1) candidates 

using size l itemsets. Note that the dynamic threshold is set to 

1200 so far, if the gain value of any two erasable itemsets is 

greater than the dynamic threshold and the TR has k entries, the 

algorithm will not create the next candidate. Finally, the 

algorithm repeats these steps until no candidates can be 

inserted into TR. Then, the mining process is finished here. 

Figure 4 shows the final result of TR [16]. 

 

Proposed Method 
 

In this section, we will use an example database to illustrate 

our algorithm. During the mining process of erasable patterns, 

we use the gain value of an itemset, which means the total 

profits of products that the itemset exists, as a main factor to 

decide whether the itemset is the erasable pattern or not. Thus, 

we use the Product-Value list and the Inverted-Subsume table 

to record the information. Note that we only have to scan the 

database one time to record the information of the database. 

During the mining process, we always use these data structures 

to extract erasable patterns. Figure 5 shows an example 

database (DBe) as the input.  

 

A. The Product-Value List and Inverted-Subsume Table 
The Product-value list, called PVlist, is composed of the 

identifications (Pi) and values (Pval) of products. For example, 

in Figure 5, there are eight products in DBe, we will record each 

product and its value into the PVlist. The main feature of PV 

list is to improve the algorithm when computing the gain values 

of candidates. That is, we can compute gain values without 

scanning the database again. Figure 6 shows the result of this 

example. 

 

The Inverted-Subsume table, which is called IsubT, is the 

item-based table, which means that it records the information 

of databases with each item in the set of items. The structure of 

IsubT is composed of four fields, which are ItemName denoted 

by Ix, gain(Ix), dPid(Ix) and subsumeList(Ix), containing the 

items, the gain values of items, the dPidset of items and the 

subsume lists of items, respectively. Figure 7 shows the size 1 

items in IsubT after scanning DBe. Then, we use IsubT as the 

main data structure during the remaining mining process. 

 

B. The Mining Process for the Original Data 
According to the given example database DBe above, we let 

rank = 6 to illustrate our method. Considering the original data, 

first of all, we scan database one time, so as to construct PVlist  

shown in Figure 6. After that, we store the dPidset of each size 

1 item in DBe, and calculate the gain values of them. Then, we 

sort these items in the ascending order of gain values. Since the 

 
 

Fig. 2 The gains, dPidsets and subsume for the example dataset [16]. 

 
 
Fig. 6 The PVlist of the original data in the DBe. 

 
 

Fig. 5 An example of product database DBe. 

 
 
Fig. 3 Top six ranked erasable itemsets in TR [16]. 

 
 
Fig. 4 Top six ranked erasable itemsets for the example datatset [16]. 

 
 

Fig. 7 Size 1 items in IsubT. 
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rank is six, we set the rank size of EpsT to six, where EpsT is 

the table to store top-rank-k erasable itemsets. Figure 8 shows 

the size 1 items in EpsT . 

 

After setting size 1 erasable patterns, we have a sorted size 1 

item list [d, b, c, f, a, e, g], which is sorted in the ascending 

order of gain values. The items in the list are those patterns 

which are in EpsT, and they will be used to create size 2 

candidates. We check subsume relations of each item in this 

item list. The checking process of subsume relation is shown 

in Figure 9. 

 

For the following mining process, we use PVlist, IsubT for 

mining without scanning the database again. For size 2 

candidates, we combine each item in size 1 item list, which 

means that if size 1 item list has n number of items, we have at 

most (n*(n-1)/2) number of candidates. In the above case, we 

have 7 items in the size 1 item list, so we will have at most 21 

(= 7*6/2) number of candidates. For size l (l ≥ 3) candidates, 

we check whether items have the same prefix to generate 

candidates. For example, given two items XY and XZ, they have 

the same prefix X. If two items have the same prefix, we will 

generate the candidate of these two items, i.e., the itemset XYZ 

(or XZY ). 

Moreover, we use the dynamic threshold method to prune 

unnecessary candidates and improve the performance of 

generating next candidates. The dynamic threshold is denoted 

by MaxGain, which is defined as follows, where EpsTlast means 

the patterns in the rank k in EpsT : 

 

MaxGain = gain(EpsTlast). 

 

While generating next candidates, we will check whether the 

gain value of the candidate is lower than or equal to MaxGain. 

There are three possible cases while we updating EpsT with the 

candidate. 

For Case I, if the gain value of the candidate is greater than 

MaxGain, we can assure that the candidate is not the erasable 

pattern, it can be pruned. The reason is that the rank of the 

candidate will be greater than k due to the feature of gain values. 

For Case II, the gain value of the candidate is lower than or 

equal to MaxGain, and EpsT also has patterns with this gain 

value. Therefore, we insert the candidate into EpsT with the 

same rank of these patterns. For Case III, the gain value of the 

candidate is lower than MaxGain, and EpsT has no patterns 

with this gain value. It means that we have to add the candidate 

into EpsT with a new rank, and let the rank of patterns whose 

gain values are greater than the gain value of the candidate be 

added 1. Moreover, we will update MaxGain according to the 

definition above. Figure 10 shows erasable patterns with their 

ranks and gain values. 

 

Performance 

 

In this section, we show the performance of mining top-rank-

k erasable patterns with our IST algorithm and the TEPUS 

algorithm. We use the Chess dataset from the dataset repository 

(http://fimi.uantwerpen.be/data/) [16]. Both of these two 

algorithms are implemented in Java on the personal computer 

with the Intel Core i7-8700 3.2 GHz CPU and 16 GB of RAM. 

We consider not only the processing time of mining erasable 

patterns, but also the number of candidates generated in the 

mining process. The profits of products of the Chess dataset 

are generated between 1 to 5000. The value of rank k which we 

considered are range of 40 to 200. 

From Figure 14 and Figure 15 for the Chess dataset, we have 

set the value of k to 40, 80, 120, 160, 200, respectively. These 

figures below show the processing time of our IST algorithm is 
faster than the processing time of the TEPUS algorithm.  
Besides, our algorithm also generated less number of 

candidates than the TEPUS algorithm. It is because the TEPUS 

does not update the MaxGain timely. Thus, the TEPUS 

algorithm generates too many unnecessary candidates during 

the mining process. Therefore, the performance of our IST 

algorithm is much better than that of TEPUS algorithm. 

 
 
Fig. 8 The size 1 items in EpsT with rank = 6. 

 
 
Fig. 9 The processing table of finding subsume relation of size 1 

items. 

 
 

Fig. 10 The EpsT after mining erasable patterns of the original 

data in DBe. 
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Conclusion 
 

In this paper, we have proposed the IST algorithm for 

incremental mining top-rank-k erasable patterns efficiently. 

We have used data structures, the PVlist and the IsubT to store 

the information of items for the mining process. Furthermore, 

we have proposed MaxGain to prune more candidates than the 

TEPUS does. The experiment results have shown that the 

performance of our IST algorithm is better than that of the 

TEPUS algorithm. 
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Fig. 15 A comparison of the number of candidates generated 

between our IST algorithm and the TEPUS algorithm for mining 

the Chess dataset under the change of k. 

 
Fig. 14 A comparison of the processing time between our IST 

algorithm and the TEPUS algorithm for mining the Chess dataset 

under the change of k. 


